Abstract: In this paper, we propose a novel k-anonymization scheme to counter deanonymization queries on social networks. With this scheme, all entities are protected by k-anonymization, which means the attackers cannot re-identify a target with confidence higher than 1/k. The proposed scheme minimizes the modification on original networks, and accordingly maximizes the utility preservation of published data while achieving k-anonymization privacy protection. Extensive experiments on real data sets demonstrate the effectiveness of the proposed scheme, where the efficacy of the k-anonymized networks is verified with the distributions of pagerank, betweenness, and their Kolmogorov-Smirnov (K-S) test.
0 Replies
Loading