Neural Program LatticesDownload PDF

Published: 06 Feb 2017, Last Modified: 05 May 2023ICLR 2017 PosterReaders: Everyone
Abstract: We propose the Neural Program Lattice (NPL), a neural network that learns to perform complex tasks by composing low-level programs to express high-level programs. Our starting point is the recent work on Neural Programmer-Interpreters (NPI), which can only learn from strong supervision that contains the whole hierarchy of low-level and high-level programs. NPLs remove this limitation by providing the ability to learn from weak supervision consisting only of sequences of low-level operations. We demonstrate the capability of NPL to learn to perform long-hand addition and arrange blocks in a grid-world environment. Experiments show that it performs on par with NPI while using weak supervision in place of most of the strong supervision, thus indicating its ability to infer the high-level program structure from examples containing only the low-level operations.
Conflicts: mit.edu, microsoft.com
Keywords: Deep learning, Semi-Supervised Learning
17 Replies

Loading