Spatial-Temporal DAG Convolutional Networks for End-to-End Joint Effective Connectivity Learning and Resting-State fMRI Classification

Published: 20 Oct 2023, Last Modified: 05 Nov 2023TGL Workshop 2023 LongPaperEveryoneRevisionsBibTeX
Keywords: Resting-state fMRI, effective connectivity, spatial-temporal-based graph convolutional network
TL;DR: We propose the Spatial-Temporal DAG Convolutional Network that jointly learns brain effective connectivity and classifies rs-fMRI time series in an end-to-end manner for studying human brain functions and brain disease pathology.
Abstract: Building comprehensive brain connectomes has proved of fundamental importance in resting-state fMRI (rs-fMRI) analysis. Based on the foundation of brain network, spatial-temporal-based graph convolutional networks have dramatically improved the performance of deep learning methods in rs-fMRI time series classification. However, existing works either pre-define the brain network as the correlation matrix derived from the raw time series or jointly learn the connectome and model parameters without any topology constraint. These methods could suffer from degraded classification performance caused by the deviation from the intrinsic brain connectivity and lack biological interpretability of demonstrating the causal structure (i.e., effective connectivity) among brain regions. Moreover, most existing methods for effective connectivity learning are unaware of the downstream classification task and cannot sufficiently exploit useful rs-fMRI label information. To address these issues in an end-to-end manner, we model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions and propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series by learning brain representations based on nonlinear structural equation model. The optimization problem is formulated into a continuous program and solved with score-based learning method via gradient descent. We evaluate ST-DAGCN on two public rs-fMRI databases. Experiments show that ST-DAGCN outperforms existing models by evident margins in rs-fMRI classification and simultaneously learns meaningful edges of effective connectivity that help understand brain activity patterns and pathological mechanisms in brain disease.
Format: Long paper, up to 8 pages. If the reviewers recommend it to be changed to a short paper, I would be willing to revise my paper to fit within 4 pages.
Submission Number: 10