Keywords: robustness, score model, reweighting
TL;DR: We propose using score-based reweighting to achieve the overall robustness under distribution shifts.
Abstract: Machine learning models often perform well on tabular data by optimizing average prediction accuracy. However, they may underperform on specific subsets due to inherent biases and spurious correlations in the training data, such as associations with non-causal features like demographic information. These biases lead to critical robustness issues as models may inherit or amplify them, resulting in poor performance where such misleading correlations do not hold. Existing mitigation methods have significant limitations: some require prior group labels, which are often unavailable, while others focus solely on the conditional distribution $P(Y|X)$, upweighting misclassified samples without effectively balancing the overall data distribution $P(X)$. To address these shortcomings, we propose a latent score-based reweighting framework. It leverages score-based models to capture the joint data distribution $P(X, Y)$ without relying on additional prior information. By estimating sample density through the similarity of score vectors with neighboring data points, our method identifies underrepresented regions and upweights samples accordingly. This approach directly tackles inherent data imbalances, enhancing robustness by ensuring a more uniform dataset representation. Experiments on various tabular datasets under distribution shifts demonstrate that our method effectively improves performance on imbalanced data.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4350
Loading