From Noise to Clarity: Unraveling the Adversarial Suffix of Large Language Model Attacks via Translation of Text Embeddings

Published: 01 Jan 2024, Last Modified: 30 Sept 2024CoRR 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The safety defense methods of Large language models(LLMs) stays limited because the dangerous prompts are manually curated to just few known attack types, which fails to keep pace with emerging varieties. Recent studies found that attaching suffixes to harmful instructions can hack the defense of LLMs and lead to dangerous outputs. However, similar to traditional text adversarial attacks, this approach, while effective, is limited by the challenge of the discrete tokens. This gradient based discrete optimization attack requires over 100,000 LLM calls, and due to the unreadable of adversarial suffixes, it can be relatively easily penetrated by common defense methods such as perplexity filters. To cope with this challenge, in this paper, we proposes an Adversarial Suffix Embedding Translation Framework (ASETF), aimed at transforming continuous adversarial suffix embeddings into coherent and understandable text. This method greatly reduces the computational overhead during the attack process and helps to automatically generate multiple adversarial samples, which can be used as data to strengthen LLMs security defense. Experimental evaluations were conducted on Llama2, Vicuna, and other prominent LLMs, employing harmful directives sourced from the Advbench dataset. The results indicate that our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques, while significantly enhancing the textual fluency of the prompts. In addition, our approach can be generalized into a broader method for generating transferable adversarial suffixes that can successfully attack multiple LLMs, even black-box LLMs, such as ChatGPT and Gemini.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview