Keywords: LLM, Overthink, Reinforcement Learning
TL;DR: This paper primarily focuses on the overthinking problem in Large Reasoning Models and proposes the DEPO algorithm to address it.
Abstract: Recent Large Reasoning Models (LRMs) have achieved remarkable performance in solving complex problems via supervised fine-tuning (SFT) and reinforcement learning (RL). Although existing RL algorithms significantly enhance model accuracy, they still suffer from excessively lengthy responses and overthinking issues, resulting in increased inference latency and computational consumption, especially for simple tasks that require minimal reasoning. To address this, we propose a novel RL framework, DEPO, to reduce inefficient reasoning for models. Our method mainly consists of three core components: (1) an innovative advantage decoupled algorithm to guide model reduction of inefficient tokens; (2) a difficulty-aware length penalty to lower the overall length of model responses; (3) an advantage clipping method to prevent bias in policy optimization. In our experiments, applied to DeepSeek-Distill-Qwen-7B and DeepSeek-Distill-Qwen-1.5B as base models, DEPO achieves a significant reduction in sequence length by 39% and reduces excessive reasoning paths in inefficient tokens, while outperforming the base model in overall accuracy.
Supplementary Material: pdf
Primary Area: reinforcement learning
Submission Number: 15234
Loading