Can Neural Networks Learn Implicit Logic from Physical Reasoning?Download PDF

Published: 01 Feb 2023, Last Modified: 09 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: logic, logical operators, logical reasoning, intuitive physics, physical reasoning, representation learning, developmental psychology, cognitive science
Abstract: Despite the success of neural network models in a range of domains, it remains an open question whether they can learn to represent abstract logical operators such as negation and disjunction. We test the hypothesis that neural networks without inherent inductive biases for logical reasoning can acquire an implicit representation of negation and disjunction. Here, implicit refers to limited, domain-specific forms of these operators, and work in psychology suggests these operators may be a precursor (developmentally and evolutionarily) to the type of abstract, domain-general logic that is characteristic of adult humans. To test neural networks, we adapt a test designed to diagnose the presence of negation and disjunction in animals and pre-verbal children, which requires inferring the location of a hidden object using constraints of the physical environment as well as implicit logic: if a ball is hidden in A or B, and shown not to be in A, can the subject infer that it is in B? Our results show that, despite the neural networks learning to track objects behind occlusion, they are unable to generalize to a task that requires implicit logic. We further show that models are unable to generalize to the test task even when they are trained directly on a logically identical (though visually dissimilar) task. However, experiments using transfer learning reveal that the models do recognize structural similarity between tasks which invoke the same logical reasoning pattern, suggesting that some desirable abstractions are learned, even if they are not yet sufficient to pass established tests of logical reasoning.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
16 Replies

Loading