MiSCHiEF: A Benchmark in Minimal-Pairs of Safety and Culture for Holistic Evaluation of Fine-Grained Image-Caption Alignment
Keywords: Multimodal Evaluation, Multimodal Evaluation Benchmark
Abstract: Fine-grained image-caption alignment is crucial for vision-language models (VLMs), especially in socially critical contexts such as identifying real-world risk scenarios or distinguishing cultural proxies, where correct interpretation hinges on subtle visual or linguistic clues and where minor misinterpretations can lead to significant real-world consequences. We present MiSCHiEF, a set of two benchmarking datasets (MiC and MiS) based on a contrastive pair design in the domains of safety and culture, and evaluate four VLMs on tasks requiring fine-grained differentiation of paired images and captions. In both datasets, each sample contains two minimally differing captions and corresponding minimally differing images. In MiS, the image-caption pairs depict a safe and an unsafe scenario, while in MiC, they depict cultural proxies in two distinct cultural contexts. We find that models generally perform better at confirming the correct image-caption pair than rejecting incorrect ones. Additionally, models achieve higher accuracy when selecting the correct caption from two highly similar captions for a given image, compared to the converse task. The results, overall, highlight persistent modality misalignment challenges in current VLMs, underscoring the difficulty of precise cross-modal grounding required for applications with subtle semantic and visual distinctions.
Submission Number: 121
Loading