Sound Randomized Smoothing in Floating-Point ArithmeticDownload PDF

Published: 01 Feb 2023, Last Modified: 14 Jul 2024ICLR 2023 posterReaders: Everyone
Keywords: Randomized smoothing, floating-point arithmetic, adversarial robustness, formal methods
TL;DR: We construct classifiers producing wrong randomized smoothing certificates on images and propose a method to overcome this at a negligible cost.
Abstract: Randomized smoothing is sound when using infinite precision. However, we show that randomized smoothing is no longer sound for limited floating-point precision. We present a simple example where randomized smoothing certifies a radius of $1.26$ around a point, even though there is an adversarial example in the distance $0.8$ and show how this can be abused to give false certificates for CIFAR10. We discuss the implicit assumptions of randomized smoothing and show that they do not apply to generic image classification models whose smoothed versions are commonly certified. In order to overcome this problem, we propose a sound approach to randomized smoothing when using floating-point precision with essentially equal speed for quantized input. It yields sound certificates or image classifiers which for the ones tested so far are very similar to the unsound practice of randomized smoothing. Our only assumption is that we have access to a fair coin.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Supplementary Material: zip
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
11 Replies