Abstract: Highlights • Propose a novel contextual feature extraction method for scene images. • Propose a novel unique tokens extraction algorithm. • Aggregate multi-scale content and contextual features to represent the scene images. • Evaluate our proposed method on three commonly-used benchmark datasets. Abstract Existing research works in scene image classification have focused on different aspects such as content features (e.g., visual information), context features (e.g., annotations, semantic information, etc.) and both. However, such works suffer from various issues such as higher feature size and lower classification performance. In this paper, we propose a new feature extraction approach for scene image representation using two kinds of rich information: content features and context features. Specifically, the new content features are generated by multi-scale foreground and background information. Similarly, the new context features are generated by the novel compact supervised codebook. Our compact supervised codebook minimizes irrelevant and redundant information, which, in result, achieves the lower-sized contextual feature vector. Finally, we combine both content and context features to represent the scene image. Our experiments on three widely used benchmark scene datasets using Support Vector Machine (SVM) classifier reveal that our proposed context and content features produce better results than existing context and content features, respectively. The fusion of the proposed two types of features significantly outperform numerous state-of-the-art features.
0 Replies
Loading