Abstract: In the digital era, the increasing demand for network traffic necessitates strategic network infrastructure planning. Accurate modeling of traffic demand through cellular traffic generation is crucial for optimizing base station deployment, enhancing network efficiency, and fostering technological innovation. In this paper, we introduce STOUTER, a spatio-temporal diffusion model for cellular traffic generation. STOUTER incorporates noise into traffic data through a forward diffusion process, followed by a reverse reconstruction process to generate realistic cellular traffic. To effectively capture the spatio-temporal patterns inherent in cellular traffic, we pre-train a temporal graph and a base station graph, and design the Spatio-Temporal Feature Fusion Module (STFFM). Leveraging STFFM, we develop STUnet, which estimates noise levels during the reverse denoising process, successfully simulating the spatio-temporal patterns and uncertainty variations in cellular traffic. Extensive experiments conducted on five cellular traffic datasets across two regions demonstrate that STOUTER improves cellular traffic generation by 52.77% in terms of the Jensen-Shannon Divergence (JSD) metric compared to existing models. These results indicate that STOUTER can generate cellular traffic distributions that closely resemble real-world data, providing valuable support for downstream applications.
External IDs:dblp:journals/tmc/LiuXLLW26
Loading