Superposing Many Tickets into One: A Performance Booster for Sparse Neural Network TrainingDownload PDF

Published: 20 May 2022, Last Modified: 05 May 2023UAI 2022 PosterReaders: Everyone
Keywords: sparse training, dynamic sparsity, subnetwork superposing
TL;DR: We proposed a sparse training approach that integrates seamlessly with the existing sparse training methods and outperforms dense training with only 5% - 10% parameters
Abstract: Recent works on sparse neural network training have shown that a compelling trade-off between performance and efficiency can be achieved. Existing sparse training methods usually strive to find the best sparse subnetwork possible in one single run, without involving any expensive dense or pre-training steps. For instance, dynamic sparse training (DST), as one of the most prominent directions, is capable of reaching a competitive performance of dense training by iteratively evolving the sparse topology during the course of training. In this paper, we argue that it is better to allocate the limited resources to create multiple low-loss sparse subnetworks and superpose them into a stronger one, instead of allocating all resources entirely to find an individual subnetwork. To achieve this, two desiderata are required: (1) efficiently producing many low-loss subnetworks, the so-called cheap tickets, within one training process limited to the standard training time used in dense training; (2) effectively superposing these cheap tickets into one stronger subnetwork without going over the constrained parameter budget. To corroborate our conjecture, we present a novel sparse training approach, termed \textbf{Sup-tickets}, which can satisfy the above two desiderata concurrently in a single sparse-to-sparse training process. Across various models on CIFAR-10/100 and ImageNet, we show that Sup-tickets integrates seamlessly with the existing sparse training methods and demonstrates consistent performance improvement.
Supplementary Material: zip
4 Replies