Learning from others' mistakes: Avoiding dataset biases without modeling themDownload PDF

Published: 12 Jan 2021, Last Modified: 05 May 2023ICLR 2021 PosterReaders: Everyone
Keywords: dataset bias, product of experts, natural language processing
Abstract: State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended underlying task. Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available. We consider cases where the bias issues may not be explicitly identified, and show a method for training models that learn to ignore these problematic correlations. Our approach relies on the observation that models with limited capacity primarily learn to exploit biases in the dataset. We can leverage the errors of such limited capacity models to train a more robust model in a product of experts, thus bypassing the need to hand-craft a biased model. We show the effectiveness of this method to retain improvements in out-of-distribution settings even if no particular bias is targeted by the biased model.
One-sentence Summary: Reducing a model's reliance on dataset biases by encouraging a robust model to learn from a weak learner's mistakes.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Data: [MultiNLI](https://paperswithcode.com/dataset/multinli)
12 Replies