Learning to Transpile AMR into SPARQLDownload PDF

Anonymous

08 Mar 2022 (modified: 05 May 2023)NAACL 2022 Conference Blind SubmissionReaders: Everyone
Paper Link: https://openreview.net/forum?id=qSMK1JCZcr7
Paper Type: Long paper (up to eight pages of content + unlimited references and appendices)
Abstract: We propose a transition-based system to transpile Abstract Meaning Representation (AMR) into SPARQL for Knowledge Base Question Answering (KBQA). This allows to delegate part of the abstraction problem to a strongly pre-trained semantic parser, while learning transpiling with small amount of paired data. We departure from recent work relating AMR and SPARQL constructs, but rather than applying a set of rules, we teach the BART model to selectively use these relations. Further, we avoid explicitly encoding AMR but rather encode the parser state in the attention mechanism of BART, following recent semantic parsing works. The resulting model is simple, provides supporting text for its decisions, and outperforms recent progress in AMR-based KBQA on LC-QuAD (F1 53.4), and QALD (F1 31.6), while exploiting the same inductive biases.
0 Replies

Loading