VISOR: VIsual Spatial Object Reasoning for Language-driven Object Navigation

ICLR 2026 Conference Submission13817 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: object navigation, language-driven object navigation, embodied ai, vlm, vla
Abstract: Language-driven object navigation requires agents to interpret natural language descriptions of target objects, which combine intrinsic and extrinsic attributes for instance recognition and commonsense navigation. Existing methods either (i) use end-to-end trained models with vision–language embeddings, which struggle to generalize beyond training data and lack action-level explainability, or (ii) rely on modular zero-shot pipelines with large language models (LLMs) and open-set object detectors, which suffer from error propagation, high computational cost, and difficulty integrating their reasoning back into the navigation policy. To this end, we propose a compact 3B-parameter Vision–Language–Action (VLA) agent that performs human-like embodied reasoning for both object recognition and action selection, removing the need for stitched multi-model pipelines. Instead of raw embedding matching, our agent employs explicit image-grounded reasoning to directly answer "Is this the target object?" and "Why should I take this action?" The reasoning process unfolds in three stages: "think", "think summary", and "action", yielding improved explainability, stronger generalization, and more efficient navigation. Code and dataset available upon acceptance.
Primary Area: applications to robotics, autonomy, planning
Submission Number: 13817
Loading