- Keywords: auto-encoder, generative models, GAN, VAE, unsupervised learning
- TL;DR: We propose a new auto-encoder based on the Wasserstein distance, which improves on the sampling properties of VAE.
- Abstract: We propose the Wasserstein Auto-Encoder (WAE)---a new algorithm for building a generative model of the data distribution. WAE minimizes a penalized form of the Wasserstein distance between the model distribution and the target distribution, which leads to a different regularizer than the one used by the Variational Auto-Encoder (VAE). This regularizer encourages the encoded training distribution to match the prior. We compare our algorithm with several other techniques and show that it is a generalization of adversarial auto-encoders (AAE). Our experiments show that WAE shares many of the properties of VAEs (stable training, encoder-decoder architecture, nice latent manifold structure) while generating samples of better quality.
- Code: [ tolstikhin/wae](https://github.com/tolstikhin/wae) + [ 10 community implementations](https://paperswithcode.com/paper/?openreview=HkL7n1-0b)
- Data: [CelebA](https://paperswithcode.com/dataset/celeba), [MNIST](https://paperswithcode.com/dataset/mnist)
21 Replies
Loading