Can Markov Models Over Minimal Translation Units Help Phrase-Based SMT?Download PDF

2013 (modified: 16 Jul 2019)ACL (2) 2013Readers: Everyone
Abstract: The phrase-based and N-gram-based SMT frameworks complement each other. While the former is better able to memorize, the latter provides a more principled model that captures dependencies across phrasal boundaries. Some work has been done to combine insights from these two frameworks. A recent successful attempt showed the advantage of using phrasebased search on top of an N-gram-based model. We probe this question in the reverse direction by investigating whether integrating N-gram-based translation and reordering models into a phrase-based decoder helps overcome the problematic phrasal independence assumption. A large scale evaluation over 8 language pairs shows that performance does significantly improve.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview