Abstract: In this work, we propose a generic scheme to promote any diffusion-based salient object detection algorithm by original ways to re-synthesize the diffusion matrix and construct the seed vector. We first make a novel analysis of the working mechanism of the diffusion matrix, which reveals the close relationship between saliency diffusion and spectral clustering. Following this analysis, we propose to re-synthesize the diffusion matrix from the most discriminative eigenvectors after adaptive re-weighting. Further, we propose to generate the seed vector based on the readily available diffusion maps, avoiding extra computation for color-based seed search. As a particular instance, we use inverse normalized Laplacian matrix as the original diffusion matrix and promote the corresponding salient object detection algorithm, which leads to superior performance as experimentally demonstrated.
0 Replies
Loading