Embedding a Semantic Network in a Word SpaceDownload PDF

2015 (modified: 16 Jul 2019)HLT-NAACL 2015Readers: Everyone
Abstract: We present a framework for using continuousspace vector representations of word meaning to derive new vectors representing the meaning of senses listed in a semantic network. It is a post-processing approach that can be applied to several types of word vector representations. It uses two ideas: first, that vectors for polysemous words can be decomposed into a convex combination of sense vectors; secondly, that the vector for a sense is kept similar to those of its neighbors in the network. This leads to a constrained optimization problem, and we present an approximation for the case when the distance function is the squared Euclidean. We applied this algorithm on a Swedish semantic network, and we evaluate the quality of the resulting sense representations extrinsically by showing that they give large improvements when used in a classifier that creates lexical units for FrameNet frames.
0 Replies

Loading