Learning Dynamic Event Descriptions in Image SequencesDownload PDFOpen Website

2007 (modified: 10 Nov 2022)CVPR 2007Readers: Everyone
Abstract: Automatic detection of dynamic events in video sequences has a variety of applications including visual surveillance and monitoring, video highlight extraction, intelligent transportation systems, video summarization, and many more. Learning an accurate description of the various events in real-world scenes is challenging owing to the limited user-labeled data as well as the large variations in the pattern of the events. Pattern differences arise either due to the nature of the events themselves such as the spatio-temporal events or due to missing or ambiguous data interpretation using computer vision methods. In this work, we introduce a novel method for representing and classifying events in video sequences using reversible context-free grammars. The grammars are learned using a semi-supervised learning method. More concretely, by using the classification entropy as a heuristic cost function, the grammars are iteratively learned using a search method. Experimental results demonstrating the efficacy of the learning algorithm and the event detection method applied to traffic video sequences are presented.
0 Replies

Loading