Convolutional Normalizing FlowsDownload PDF

15 Feb 2018 (modified: 14 Oct 2024)ICLR 2018 Conference Blind SubmissionReaders: Everyone
Abstract: Bayesian posterior inference is prevalent in various machine learning problems. Variational inference provides one way to approximate the posterior distribution, however its expressive power is limited and so is the accuracy of resulting approximation. Recently, there has a trend of using neural networks to approximate the variational posterior distribution due to the flexibility of neural network architecture. One way to construct flexible variational distribution is to warp a simple density into a complex by normalizing flows, where the resulting density can be analytically evaluated. However, there is a trade-off between the flexibility of normalizing flow and computation cost for efficient transformation. In this paper, we propose a simple yet effective architecture of normalizing flows, ConvFlow, based on convolution over the dimensions of random input vector. Experiments on synthetic and real world posterior inference problems demonstrate the effectiveness and efficiency of the proposed method.
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/convolutional-normalizing-flows/code)
10 Replies

Loading