Systematic Generalization: What Is Required and Can It Be Learned?

Dzmitry Bahdanau*, Shikhar Murty*, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, Aaron Courville

Sep 27, 2018 ICLR 2019 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: Numerous models for grounded language understanding have been recently proposed, including (i) generic modules that can be used easily adapted to any given task with little adaptation and (ii) intuitively appealing modular models that require background knowledge to be instantiated. We compare generic and modular models in how much they lend themselves to a particular form of systematic generalization. Using a synthetic VQA test, we evaluate which models are capable of reasoning about all possible object pairs after training on only a small subset of them. Our findings show that the generalization of modular models is much more systematic and that it is highly sensitive to the module layout, i.e. to how exactly the modules are connected. We furthermore investigate if modular models that generalize well could be made more end-to-end by learning their layout and parametrization. We show how end-to-end methods from prior work often learn a wrong layout and a spurious parametrization that do not facilitate systematic generalization.
  • Keywords: systematic generalization, language understanding, visual questions answering, neural module networks
  • TL;DR: We show that modular structured models are the best in terms of systematic generalization and that their end-to-end versions don't generalize as well.
0 Replies