4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum Disorder ClassificationDownload PDF

17 Apr 2019 (modified: 05 Jul 2019)MIDL 2019 Conference Abstract SubmissionReaders: Everyone
  • Keywords: 4D Deep Learning, 4D CNN, fMRI, ASD
  • TL;DR: We propose 4D deep learning methods for Autism spectrum disorder from 4D fMRI data.
  • Abstract: Autism spectrum disorder (ASD) is associated with behavioral and communication problems. Often, functional magnetic resonance imaging (fMRI) is used to detect and characterize brain changes related to the disorder. Recently, machine learning methods have been employed to reveal new patterns by trying to classify ASD from spatio-temporal fMRI images. Typically, these methods have either focused on temporal or spatial information processing. Instead, we propose a 4D spatio-temporal deep learning approach for ASD classification where we jointly learn from spatial and temporal data. We employ 4D convolutional neural networks and convolutional-recurrent models which outperform a previous approach with an F1-score of 0.71 compared to an F1-score of 0.65.
  • Code Of Conduct: I have read and accept the code of conduct.
  • Remove If Rejected: Remove submission from public view if paper is rejected.
3 Replies