Transformer Meets Boundary Value Inverse ProblemsDownload PDF

Published: 01 Feb 2023, Last Modified: 14 Oct 2024ICLR 2023 posterReaders: Everyone
Keywords: inverse problems, attention, operator learning, Transformer, partial differential equations
TL;DR: We argue that, from both theoretical and experimental perspective, the attention mechanism is a structure-conforming neural architecture for learning the PDE-based boundary value inverse problems.
Abstract: A Transformer-based deep direct sampling method is proposed for electrical impedance tomography, a well-known severely ill-posed nonlinear boundary value inverse problem. A real-time reconstruction is achieved by evaluating the learned inverse operator between carefully designed data and the reconstructed images. An effort is made to give a specific example to a fundamental question: whether and how one can benefit from the theoretical structure of a mathematical problem to develop task-oriented and structure-conforming deep neural networks? Specifically, inspired by direct sampling methods for inverse problems, the 1D boundary data in different frequencies are preprocessed by a partial differential equation-based feature map to yield 2D harmonic extensions as different input channels. Then, by introducing learnable non-local kernels, the direct sampling is recast to a modified attention mechanism. The new method achieves superior accuracy over its predecessors and contemporary operator learners and shows robustness to noises in benchmarks. This research shall strengthen the insights that, despite being invented for natural language processing tasks, the attention mechanism offers great flexibility to be modified in conformity with the a priori mathematical knowledge, which ultimately leads to the design of more physics-compatible neural architectures.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Machine Learning for Sciences (eg biology, physics, health sciences, social sciences, climate/sustainability )
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/transformer-meets-boundary-value-inverse/code)
20 Replies

Loading