Models See Hallucinations: Evaluating the Factuality in Video Captioning

Published: 07 Oct 2023, Last Modified: 01 Dec 2023EMNLP 2023 MainEveryoneRevisionsBibTeX
Submission Type: Regular Long Paper
Submission Track: Language Grounding to Vision, Robotics and Beyond
Submission Track 2: Resources and Evaluation
Keywords: Hallucination, Factuality Evaluation, Video Captioning
Abstract: Video captioning aims to describe events in a video with natural language. In recent years, many works have focused on improving captioning models' performance. However, like other text generation tasks, it risks introducing factual errors not supported by the input video. Factual errors can seriously affect the quality of the generated text, sometimes making it completely unusable. Although factual consistency has received much research attention in text-to-text tasks (e.g., summarization), it is less studied in vision-based text generation. In this work, we conduct the first human evaluation of the factuality in video captioning and annotate two factuality datasets. We find that 56\% of the model-generated sentences have factual errors, indicating it is a severe problem in this field, but existing evaluation metrics show little correlation with human factuality annotation. We further propose a weakly-supervised, model-based factuality metric FactVC, which outperforms previous metrics on factuality evaluation of video captioning.
Submission Number: 1214
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview