Recurrent 3D-2D Dual Learning for Large-Pose Facial Landmark DetectionDownload PDFOpen Website

2017 (modified: 26 Jan 2025)ICCV 2017Readers: Everyone
Abstract: Despite remarkable progress of face analysis techniques, detecting landmarks on large-pose faces is still difficult due to self-occlusion, subtle landmark difference and incomplete information. To address these challenging issues, we introduce a novel recurrent 3D-2D dual learning model that alternatively performs 2D-based 3D face model refinement and 3D-to-2D projection based 2D landmark refinement to reliably reason about self-occluded landmarks, precisely capture the subtle landmark displacement and accurately detect landmarks even in presence of extremely large poses. The proposed model presents the first loop-closed learning framework that effectively exploits the informative feedback from the 3D-2D learning and its dual 2D-3D refinement tasks in a recurrent manner. Benefiting from these two mutual-boosting steps, our proposed model demonstrates appealing robustness to large poses (up to profile pose) and outstanding ability to capture fine-scale landmark displacement compared with existing 3D models. It achieves new state-of-the-art on the challenging AFLW benchmark. Moreover, our proposed model introduces a new architectural design that economically utilizes intermediate features and achieves 4× faster speed than its deep learning based counterparts.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview