Non-Associative Learning Representation in the Nervous System of the Nematode Caenorhabditis elegansDownload PDF

28 Mar 2024 (modified: 20 Mar 2017)ICLR 2017 workshop submissionReaders: Everyone
Abstract: Caenorhabditis elegans (C. elegans) illustrated remarkable behavioral plasticities including complex non-associative and associative learning representations. Understanding the principles of such mechanisms presumably leads to constructive inspirations for the design of efficient learning algorithms. In the present study, we postulate a novel approach on modeling single neurons and synapses to study the mechanisms underlying learning in the C. elegans nervous system. In this regard, we construct a precise mathematical model of sensory neurons where we include multi-scale details from genes, ion channels and ion pumps, together with a dynamic model of synapses comprised of neurotransmitters and receptors kinetics. We recapitulate mechanosensory habituation mechanism, a non-associative learning process, in which elements of the neural network tune their parameters as a result of repeated input stimuli. Accordingly, we quantitatively demonstrate the roots of such plasticity in the neuronal and synaptic-level representations. Our findings can potentially give rise to the development of new bio-inspired learning algorithms.
TL;DR: The paper investigates the principles underlaying learning in the brain of the worm, C. elegans.
Keywords: Theory
Conflicts: tuwien.ac.at
5 Replies

Loading