Adversarial Robust Representation Learning via Contrast and Alignment

17 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: Robust Representation Learning via Asymmetric Negative Contrast and Reverse Attention
TL;DR: Learning robust feature boosts AT
Abstract: Deep neural networks are vulnerable to adversarial noise. Adversarial training (AT) has been demonstrated to be the most effective defense strategy to protect neural networks from being fooled. However, we find AT omits to learning robust features, resulting in poor performance of adversarial robustness. To address this issue, we highlight two characteristics of robust representation: $(1) exclusion$: the feature of natural examples keeps away from that of other classes; $(2) alignment$: the feature of natural and corresponding adversarial examples is close to each other. These motivate us to propose a generic framework of AT to gain robust representation, by the asymmetric negative contrast and reverse attention. Specifically, we design an asymmetric negative contrast based on predicted probabilities, to push away examples of different classes in the feature space. Moreover, we propose to weight feature by parameters of the linear classifier as the reverse attention, to obtain class-aware feature and pull close the feature of the same class. Empirical evaluations on three benchmark datasets show our methods greatly advance the robustness of AT and achieve state-of-the-art performance.
Primary Area: societal considerations including fairness, safety, privacy
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 911
Loading