Abstract: We present an unsupervised method to find lexical variations in Roman Urdu informal text. Our method includes a phonetic algorithm UrduPhone, a featurebased similarity function, and a clustering algorithm Lex-C. UrduPhone encodes roman Urdu strings to their phonetic equivalent representations. This produces an initial grouping of different spelling variations of a word. The similarity function incorporates word features and their context. Lex-C is a variant of k-medoids clustering algorithm that group lexical variations. It incorporates a similarity threshold to balance the number of clusters and their maximum similarity. We test our system on two datasets of SMS and blogs and show an f-measure gain of up to 12% from baseline systems.
0 Replies
Loading