Abstract: Maximal clique enumeration (MCE) is a long-standing problem in graph theory and has numerous important applications. Though extensively studied, most existing algorithms become impractical when the input graph is too large and is disk-resident. We first propose an efficient partition-based algorithm for MCE that addresses the problem of processing large graphs with limited memory. We then further reduce the high cost of CPU computation of MCE by a careful nested partition based on a cost model. Finally, we parallelize our algorithm to further reduce the overall running time. We verified the efficiency of our algorithms by experiments in large real-world graphs.
0 Replies
Loading