Scalable Unbalanced Optimal Transport using Generative Adversarial Networks


Sep 27, 2018 (modified: Oct 10, 2018) ICLR 2019 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: Generative adversarial networks (GANs) are an expressive class of neural generative models with tremendous success in modeling high-dimensional continuous measures. In this paper, we present a scalable method for unbalanced optimal transport (OT) based on the generative-adversarial framework. We formulate unbalanced OT as a problem of simultaneously learning a transport map and a scaling factor that push a source measure to a target measure in a cost-optimal manner, and propose a new algorithm based on stochastic alternating gradient updates, similar in practice to GANs. We also provide theoretical justification for this formulation, showing that it is closely related to an existing static formulation by Liero et al. (2018), and perform numerical experiments demonstrating how this methodology could be applied to population modeling.
  • Keywords: unbalanced optimal transport, generative adversarial networks, population modeling
  • TL;DR: We propose new methodology for unbalanced optimal transport using generative adversarial networks.
0 Replies