$A^*$ sampling with probability matching

Yichi Zhou, Jun Zhu

Sep 27, 2018 ICLR 2019 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: Probabilistic methods often need to draw samples from a nontrivial distribution. $A^*$ sampling is a nice algorithm by building upon a top-down construction of a Gumbel process, where a large state space is divided into subsets and at each round $A^*$ sampling selects a subset to process. However, the selection rule depends on a bound function, which can be intractable. Moreover, we show that such a selection criterion can be inefficient. This paper aims to improve $A^*$ sampling by addressing these issues. To design a suitable selection rule, we apply \emph{Probability Matching}, a widely used method for decision making, to $A^*$ sampling. We provide insights into the relationship between $A^*$ sampling and probability matching by analyzing a nontrivial special case in which the state space is partitioned into two subsets. We show that in this case probability matching is optimal within a constant gap. Furthermore, as directly applying probability matching to $A^*$ sampling is time consuming, we design an approximate version based on Monte-Carlo estimators. We also present an efficient implementation by leveraging special properties of Gumbel distributions and well-designed balanced trees. Empirical results show that our method saves a significantly amount of computational resources on suboptimal regions compared with $A^*$ sampling.
0 Replies

Loading