Text Embeddings for Retrieval from a Large Knowledge Base

Tolgahan Cakaloglu, Christian Szegedy, Xiaowei Xu

Sep 27, 2018 ICLR 2019 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: Text embedding representing natural language documents in a semantic vector space can be used for document retrieval using nearest neighbor lookup. In order to study the feasibility of neural models specialized for retrieval in a semantically meaningful way, we suggest the use of the Stanford Question Answering Dataset (SQuAD) in an open-domain question answering context, where the first task is to find paragraphs useful for answering a given question. First, we compare the quality of various text-embedding methods on the performance of retrieval and give an extensive empirical comparison on the performance of various non-augmented base embedding with, and without IDF weighting. Our main results are that by training deep residual neural models specifically for retrieval purposes can yield significant gains when it is used to augment existing embeddings. We also establish that deeper models are superior to this task. The best base baseline embeddings augmented by our learned neural approach improves the top-1 recall of the system by 14% in terms of the question side, and by 8% in terms of the paragraph side.
  • Keywords: Text Embeddings, Document Ranking, Improving Retrieval, Question-Answering, Learning to Rank
  • TL;DR: The new attempt for creating semantically meaningful text embeddings via improved language modeling and utilizing an extra knowledge base
0 Replies