Scale-Adaptive Feature Aggregation for Efficient Space-Time Video Super-Resolution

Published: 01 Jan 2024, Last Modified: 20 May 2025WACV 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The Space-Time Video Super-Resolution (STVSR) task aims to enhance the visual quality of videos, by simultaneously performing video frame interpolation (VFI) and video super-resolution (VSR). However, facing the challenge of the additional temporal dimension and scale inconsistency, most existing STVSR methods are complex and inflexible in dynamically modeling different motion amplitudes. In this work, we find that choosing an appropriate processing scale achieves remarkable benefits in flow-based feature propagation. We propose a novel Scale-Adaptive Feature Aggregation (SAFA) network that adaptively selects sub-networks with different processing scales for individual samples. Experiments on four public STVSR benchmarks demonstrate that SAFA achieves state-of-the-art performance. Our SAFA network outperforms recent state-of-the-art methods such as TMNet [83] and VideoINR [10] by an average improvement of over 0.5dB on PSNR, while requiring less than half the number of parameters and only 1/3 computational costs.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview