Robust Algorithms on Adaptive Inputs from Bounded AdversariesDownload PDF

Published: 01 Feb 2023, 19:23, Last Modified: 02 Mar 2023, 18:54ICLR 2023 posterReaders: Everyone
Keywords: streaming algorithms, adversarial robustness, sketching, kernel density estimation
TL;DR: We give algorithms robust to adaptive input from adversaries with bounded capabilities and a general framework for achieving it.
Abstract: We study dynamic algorithms robust to adaptive input generated from sources with bounded capabilities, such as sparsity or limited interaction. For example, we consider robust linear algebraic algorithms when the updates to the input are sparse but given by an adversary with access to a query oracle. We also study robust algorithms in the standard centralized setting, where an adversary queries an algorithm in an adaptive manner, but the number of interactions between the adversary and the algorithm is bounded. We first recall a unified framework of (Hassidim et al., 2020; Beimel et al., 2022; Attias et al., 2023) for answering $Q$ adaptive queries that incurs $\widetilde{\mathcal{O}}(\sqrt{Q})$ overhead in space, which is roughly a quadratic improvement over the na\"{i}ve implementation, and only incurs a logarithmic overhead in query time. Although the general framework has diverse applications in machine learning and data science, such as adaptive distance estimation, kernel density estimation, linear regression, range queries, point queries, and serves as a preliminary benchmark, we demonstrate even better algorithmic improvements for (1) reducing the pre-processing time for adaptive distance estimation and (2) permitting an unlimited number of adaptive queries for kernel density estimation. Finally, we complement our theoretical results with additional empirical evaluations.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
12 Replies