Keywords: Semi-supervised Learning, Real-world image dehazing
TL;DR: The cooperative unfolding network (CORUN) and the first plug-in-play iterative mean-teacher framework (Colabator) for real-world image dehazing.
Abstract: Real-world Image Dehazing (RID) aims to alleviate haze-induced degradation in real-world settings. This task remains challenging due to the complexities in accurately modeling real haze distributions and the scarcity of paired real-world data. To address these challenges, we first introduce a cooperative unfolding network that jointly models atmospheric scattering and image scenes, effectively integrating physical knowledge into deep networks to restore haze-contaminated details. Additionally, we propose the first RID-oriented iterative mean-teacher framework, termed the Coherence-based Label Generator, to generate high-quality pseudo labels for network training. Specifically, we provide an optimal label pool to store the best pseudo-labels during network training, leveraging both global and local coherence to select high-quality candidates and assign weights to prioritize haze-free regions. We verify the effectiveness of our method, with experiments demonstrating that it achieves state-of-the-art performance on RID tasks. Code will be available at https://github.com/cnyvfang/CORUN-Colabator.
Primary Area: Machine vision
Submission Number: 1840
Loading