DRDT3: Diffusion-Refined Decision Test-Time Training Model

TMLR Paper5089 Authors

11 Jun 2025 (modified: 17 Jun 2025)Under review for TMLREveryoneRevisionsBibTeXCC BY 4.0
Abstract: Decision Transformer (DT), a trajectory modelling method, has shown competitive performance compared to traditional offline reinforcement learning (RL) approaches on various classic control tasks. However, it struggles to learn optimal policies from suboptimal, reward-labelled trajectories. In this study, we explore the use of conditional generative modelling to facilitate trajectory stitching given its high-quality data generation ability. Additionally, recent advancements in Recurrent Neural Networks (RNNs) have shown their linear complexity and competitive sequence modelling performance over Transformers. We leverage the Test-Time Training (TTT) layer, an RNN that updates hidden states during testing, to model trajectories in the form of DT. We introduce a unified framework, called Diffusion-Refined Decision TTT (DRDT3), to achieve performance beyond DT models. Specifically, we propose the Decision TTT (DT3) module, which harnesses the sequence modelling strengths of both self-attention and the TTT layer to capture recent contextual information and make coarse action predictions. DRDT3 iteratively refines the coarse action predictions through the generative diffusion model, progressively moving closer to the optimal actions. We further integrate DT3 with the diffusion model using a unified optimization objective. With experiments on multiple tasks of Gym and AntMaze in the D4RL benchmark, our DT3 model without diffusion refinement demonstrates improved performance over standard DT, while DRDT3 further achieves superior results compared to state-of-the-art conventional offline RL and DT-based methods.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Mingming_Gong1
Submission Number: 5089
Loading