Abstract: We consider a binary classifier defined as the sign of a tropical rational function, that is, as the difference of two convex piecewise linear functions. In particular, the set of functions represented by a ReLU neural network can be regarded as a subset in the parameter space of tropical rational functions, specifically, it is contained as a semialgebraic set. We initiate the study of two different subdivisions of the parameter space of tropical rational functions with fixed number of terms in the numerator and denominator: a subdivision into semialgebraic sets, on which the combinatorial type of the decision boundary is fixed, and a subdivision into a polyhedral fan, capturing the combinatorics of the partitions of the dataset. The sublevel sets of the $0/1$-loss function arise as subfans of this classification fan, and we show that the level-sets are not necessarily connected. We describe the classification fan i) geometrically, as normal fan of the activation polytope, and ii) combinatorially through a list of properties of associated bipartite graphs, in analogy to covector axioms of oriented matroids and tropical oriented matroids. Our findings extend and refine the connection between neural networks and tropical geometry by observing structures established in real tropical geometry, such as positive tropicalizations of hypersurfaces and tropical semialgebraic sets.
Submission Length: Long submission (more than 12 pages of main content)
Previous TMLR Submission Url: https://openreview.net/forum?id=I7JWf8XA2w
Changes Since Last Submission: In the camera ready update we added the acceptance date, names of the authors, OpenReview URL, and acknowledgments.
Assigned Action Editor: ~Jeremias_Sulam1
Submission Number: 2838
Loading