FTSCommDetector: Discovering Behavioral Communities through Temporal Synchronization

16 Sept 2025 (modified: 12 Feb 2026)ICLR 2026 Conference Desk Rejected SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: time series clustering, synchronization patterns, graph neural networks, financial time series
TL;DR: Traditional clustering fails on multivariate financial time series; we capture synchronization-desynchronization dynamics through multi-scale encoding and dynamic attention.
Abstract: Why do trillion-dollar tech giants AAPL and MSFT diverge into different response patterns during market disruptions despite identical sector classifications? This paradox reveals a fundamental limitation: traditional community detection methods fail to capture synchronization-desynchronization patterns where entities move independently yet align during critical moments. To this end, we introduce FTSCommDetector, implementing our Temporal Coherence Architecture (TCA) to discover similar and dissimilar communities in continuous multivariate time series. Unlike existing methods that process each timestamp independently, causing unstable community assignments and missing evolving relationships, our approach maintains coherence through dual-scale encoding and static topology with dynamic attention. Furthermore, we establish information-theoretic foundations demonstrating how scale separation maximizes complementary information and introduce Normalized Temporal Profiles (NTP) for scale-invariant evaluation. As a result, FTSCommDetector achieves consistent improvements across four diverse financial markets (SP100, SP500, SP1000, Nikkei 225), with gains ranging from 3.5% to 11.1% over the strongest baselines. The method demonstrates remarkable robustness with only 2% performance variation across window sizes from 60 to 120 days, making dataset-specific tuning unnecessary, providing practical insights for portfolio construction and risk management.
Primary Area: learning on time series and dynamical systems
Submission Number: 6632
Loading