Batched Multi-Armed Bandits with Optimal Regret.Download PDFOpen Website

2019 (modified: 09 Nov 2022)CoRR2019Readers: Everyone
Abstract: We present simple and efficient algorithms for the batched stochastic multi-armed bandit and batched stochastic linear bandit problems. We prove bounds for their expected regrets that improve over the best-known regret bounds for any number of batches. In particular, our algorithms in both settings achieve the optimal expected regrets by using only a logarithmic number of batches. We also study the batched adversarial multi-armed bandit problem for the first time and find the optimal regret, up to logarithmic factors, of any algorithm with predetermined batch sizes.
0 Replies

Loading