VISION TRANSFORMER FOR MULTIVARIATE TIME- SERIES CLASSIFICATION (VITMTSC)Download PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: time-series classification, vision-transformer, transformer
TL;DR: A Vision Transformer based Multivariate Time-Series Classification model that significantly outperforms current SOTA on commercial datasets.
Abstract: Multivariate Time-Series Classification (MTSC) is an important issue in many disciplines because of the proliferation of disparate data sources and sensors (economics, retail, health, etc.). Nonetheless, it remains difficult due to the high-dimensionality and richness of data that is regularly updated. We present a Vision Transformer for Multivariate Time-Series Classification (VitMTSC) model that learns latent features from raw time-series data for classification tasks and is applicable to large-scale time-series data with millions of data samples of variable lengths. According to our knowledge, this is the first implementation of the Vision Transformer (ViT) for MTSC. We demonstrate that our approach works on datasets ranging from a few thousand to millions of samples and achieves close to the state-of-the-art (SOTA) results on open datasets. Using click-stream data from a major retail website, we demonstrate that our model can scale to millions of samples and vastly outperform previous neural net-based MTSC models in real-world applications. Our source code is publicly accessible at https://github.com/mtsc-research/vitmtsc to facilitate further research.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
7 Replies

Loading