Keywords: positive-congruent training, negative flip, ensemble learning
Abstract: Negative flips are errors introduced in a classification system when a legacy model is updated. Existing methods to reduce the negative flip rate (NFR) either do so at the expense of overall accuracy by forcing a new model to imitate the old models, or use ensembles, which multiply inference cost prohibitively. We analyze the role of ensembles in reducing NFR and observe that they remove negative flips that are typically not close to the decision boundary, but often exhibit large deviations in the distance among their logits. Based on the observation, we present a method, called Ensemble Logit Difference Inhibition ELODI, to train a classification system that achieves paragon performance in both error rate and NFR, at the inference cost of a single model. The method distills a homogeneous ensemble to a single student model which is used to update the classification system. ELODI also introduces a generalized distillation objective, Logit Difference Inhibition (LDI), which penalizes changes in the logits between the reference ensemble and the student single model.
On multiple image classification benchmarks, model updates with ELODI demonstrate superior accuracy retention and NFR reduction.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
20 Replies
Loading