Keywords: Image Manipulation Detection and Localization, Deepfake Detection, AI-Generated Image Detection, Document Image Manipulation Localization
Abstract: The field of Fake Image Detection and Localization (FIDL) is highly fragmented, encompassing four domains: deepfake detection (Deepfake), image manipulation detection and localization (IMDL), artificial intelligence-generated image detection (AIGC), and document image manipulation localization (Doc). Although individual benchmarks exist in some domains, a unified benchmark for all domains in FIDL remains blank. The absence of a unified benchmark results in significant domain silos, where each domain independently constructs its datasets, models, and evaluation protocols without interoperability, preventing cross-domain comparisons and hindering the development of the entire FIDL field. To close the domain silo barrier, we propose ForensicHub, the first unified benchmark \& codebase for all-domain fake image detection and localization. Considering drastic variations on dataset, model, and evaluation configurations across all domains, as well as the scarcity of open-sourced baseline models and the lack of individual benchmarks in some domains, ForensicHub: i) proposes a modular and configuration-driven architecture that decomposes forensic pipelines into interchangeable components across datasets, transforms, models, and evaluators, allowing flexible composition across all domains; ii) fully implements 10 baseline models (3 of which are reproduced from scratch), 6 backbones, 2 new benchmarks for AIGC and Doc, and integrates 2 existing benchmarks of DeepfakeBench and IMDLBenCo through an adapter-based design; iii) establishes an image forensic fusion protocol evaluation mechanism that supports unified training and testing of diverse forensic models across tasks; iv) conducts indepth analysis based on the ForensicHub, offering 8 key actionable insights into FIDL model architecture, dataset characteristics, and evaluation standards. Specifically, ForensicHub includes 4 forensic tasks, 23 datasets, 42 baseline models, 6 backbones, 11 GPU-accelerated pixel- and image-level evaluation metrics, and realizes 16 kinds of cross-domain evaluations. ForensicHub represents a significant leap forward in breaking the domain silos in the FIDL field and inspiring future breakthroughs. Code is available at: https://github.com/scu-zjz/ForensicHub.
Code URL: https://github.com/scu-zjz/ForensicHub
Supplementary Material: zip
Primary Area: Datasets & Benchmarks for applications in computer vision
Submission Number: 663
Loading