Uncertainty-aware Constraint Inference in Inverse Constrained Reinforcement Learning

Published: 16 Jan 2024, Last Modified: 13 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Inverse Constrained Reinforcement Learning, Constrained Reinforcement Learning, Inverse Reinforcement Learning, Uncertainty Modeling
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We proposed Uncertainty-aware Inverse Constrained Reinforcement Learning (UAICRL), a novel ICRL framework that models both the aleatoric and epistemic uncertainties towards uncertainty-aware constraint inference.
Abstract: Aiming for safe control, Inverse Constrained Reinforcement Learning (ICRL) considers inferring the constraints respected by expert agents from their demonstrations and learning imitation policies that adhere to these constraints. While previous ICRL works often neglected underlying uncertainties during training, we contend that modeling these uncertainties is crucial for facilitating robust constraint inference. This insight leads to the development of an Uncertainty-aware Inverse Constrained Reinforcement Learning (UAICRL) algorithm. Specifically, 1) aleatoric uncertainty arises from the inherent stochasticity of environment dynamics, leading to constraint-violating behaviors in imitation policies. To address this, UAICRL constructs risk-sensitive constraints by incorporating distributional Bellman updates into the cumulative costs model. 2) Epistemic uncertainty, resulting from the model's limited knowledge of Out-of-Distribution (OoD) samples, affects the accuracy of step-wise cost predictions. To tackle this issue, UAICRL develops an information-theoretic quantification of the epistemic uncertainty and mitigates its impact through flow-based generative data augmentation. Empirical results demonstrate that UAICRL consistently outperforms other baselines in continuous and discrete environments with stochastic dynamics. The code is available at https://github.com/Jasonxu1225/UAICRL.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: reinforcement learning
Submission Number: 5021
Loading