AlphaZero Neural Scaling and Zipf's Law: a Tale of Board Games and Power Laws

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Scaling Laws, Reinforcement Learning
TL;DR: We show evidence that LLM scaling theory, connecting Zipf's law to scaling laws, applies to AlphaZero scaling.
Abstract: Neural scaling laws are observed in a range of domains, to date with no universal understanding of why they occur. Recent theories suggest that loss power laws arise from Zipf's law, a power law observed in domains like natural language. One theory suggests that language scaling laws emerge when Zipf-distributed task quanta are learned in descending order of frequency. In this paper we examine power-law scaling in AlphaZero, a reinforcement learning algorithm, using a model of language-model scaling. We find that game states in training and inference data scale with Zipf's law, which is known to arise from the tree structure of the environment, and examine the correlation between scaling-law and Zipf's-law exponents. In agreement with the quanta scaling model, we find that agents optimize state loss in descending order of frequency, even though this order scales inversely with modelling complexity. We also find that inverse scaling, the failure of models to improve with size, is correlated with unusual Zipf curves where end-game states are among the most frequent states. We show evidence that larger models shift their focus to these less-important states, sacrificing their understanding of important early-game states.
Primary Area: Reinforcement learning (e.g., decision and control, planning, hierarchical RL, robotics)
Submission Number: 12255
Loading