Improving Multi-Center Generalizability of GAN-Based Fat Suppression using Federated Learning

Published: 27 Apr 2024, Last Modified: 14 May 2024MIDL 2024 Short PapersEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Image Synthesis, GAN, Fat Suppression, Federated Learning
Abstract: Generative Adversarial Network (GAN)-based synthesis of fat suppressed (FS) MRIs from non-FS proton density sequences has the potential to accelerate acquisition of knee MRIs. However, GANs trained on single-site data have poor generalizability to external data. We show that federated learning can improve multi-center generalizability of GANs for synthesizing FS MRIs, while facilitating privacy-preserving multi-institutional collaborations.
Submission Number: 137
Loading