On the Hidden Waves of Image

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: mathematical property of images, partial differential equation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Reconstructing images from a set of one-way wave equations with hidden speed
Abstract: In this paper, we introduce an intriguing phenomenon – the successful reconstruction of images using a set of one-way wave equations with hidden and learnable speeds. Each individual image corresponds to a solution with a unique initial condition, which can be computed from the original image using a visual encoder (e.g., a convolutional neural network). Furthermore, the solution for each image exhibits two noteworthy mathematical properties: (a) it can be decomposed into a collection of special solutions of the same one-way wave equations that are first-order autoregressive, with shared coefficient matrices for autoregression, and (b) the product of these coefficient matrices forms a diagonal matrix with the speeds of the wave equations as its diagonal elements. We term this phenomenon *hidden waves*, as it reveals that, although the speeds of the set of wave equations and autoregressive coefficient matrices are latent, they are both learnable and shared across images. This represents a mathematical invariance across images, providing a new mathematical perspective to understand images.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3126
Loading