Dynamic Inference with Neural InterpretersDownload PDF

Published: 09 Nov 2021, Last Modified: 22 Oct 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: Modular Architectures, Attention Networks, Neural Networks, Abstract Reasoning, Systematic Generalisation.
TL;DR: A modular, self-attention network that dynamically routes information between the learned modules to make an inference.
Abstract: Modern neural network architectures can leverage large amounts of data to generalize well within the training distribution. However, they are less capable of systematic generalization to data drawn from unseen but related distributions, a feat that is hypothesized to require compositional reasoning and reuse of knowledge. In this work, we present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules, which we call _functions_. Inputs to the model are routed through a sequence of functions in a way that is end-to-end learned. The proposed architecture can flexibly compose computation along width and depth, and lends itself well to capacity extension after training. To demonstrate the versatility of Neural Interpreters, we evaluate it in two distinct settings: image classification and visual abstract reasoning on Raven Progressive Matrices. In the former, we show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner. In the latter, we find that Neural Interpreters are competitive with respect to the state-of-the-art in terms of systematic generalization.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2110.06399/code)
16 Replies

Loading