In Search of Forgotten Domain Generalization

Published: 06 Mar 2025, Last Modified: 06 Mar 2025SCSL @ ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Track: regular paper (up to 6 pages)
Keywords: OOD generelization, CLIP, Domain Generalization
TL;DR: CLIP does not generalize well to rendition domains when trained on natural-only images.
Abstract: Out-of-Domain (OOD) generalization is the ability of a model trained on one or more domains to generalize to unseen domains. In the ImageNet era of computer vision, evaluation sets for measuring a model's OOD performance were designed to be strictly OOD with respect to style. However, the emergence of foundation models and expansive web-scale datasets has obfuscated this evaluation process, as datasets cover a broad range of domains and risk test domain contamination. In search of the forgotten domain generalization, we create large-scale datasets subsampled from LAION---LAION-Natural and LAION-Rendition---that are strictly OOD to corresponding ImageNet and DomainNet test sets in terms of style. Training CLIP models on these datasets reveals that a significant portion of their performance is explained by in-domain examples. This indicates that the OOD generalization challenges from the ImageNet era still prevail and that training on web-scale data merely creates the illusion of OOD generalization. Furthermore, through a systematic exploration of combining natural and rendition datasets in varying proportions, we identify optimal mixing ratios for model generalization across these domains. Our datasets and results re-enable meaningful assessment of OOD robustness at scale---a crucial prerequisite for improving model robustness.
Anonymization: This submission has been anonymized for double-blind review via the removal of identifying information such as names, affiliations, and identifying URLs.
Format: Yes, the presenting author will definitely attend in person because they attending ICLR for other complementary reasons.
Funding: No, the presenting author of this submission does *not* fall under ICLR’s funding aims, or has sufficient alternate funding.
Presenter: ~Prasanna_Mayilvahanan2
Submission Number: 35
Loading