Fine-grained Late-interaction Multi-modal Retrieval for Retrieval Augmented Visual Question Answering
Keywords: knowledge-based visual question answering, knowledge retrieval, multi-modality, vision-and-language
TL;DR: We proposed FLMR, Fine-grained Late-interaction Multi-modal Retrieval, which improves the performance of the RA-VQA framework significantly.
Abstract: Knowledge-based Visual Question Answering (KB-VQA) requires VQA systems to utilize knowledge from external knowledge bases to answer visually-grounded questions. Retrieval-Augmented Visual Question Answering (RA-VQA), a strong framework to tackle KB-VQA, first retrieves related documents with Dense Passage Retrieval (DPR) and then uses them to answer questions. This paper proposes Fine-grained Late-interaction Multi-modal Retrieval (FLMR) which significantly improves knowledge retrieval in RA-VQA. FLMR addresses two major limitations in RA-VQA's retriever: (1) the image representations obtained via image-to-text transforms can be incomplete and inaccurate and (2) similarity scores between queries and documents are computed with one-dimensional embeddings, which can be insensitive to finer-grained similarities.
FLMR overcomes these limitations by obtaining image representations that complement those from the image-to-text transform using a vision model aligned with an existing text-based retriever through a simple alignment network. FLMR also encodes images and questions using multi-dimensional embeddings to capture finer-grained similarities between queries and documents.
FLMR significantly improves the original RA-VQA retriever's PRRecall@5 by approximately 8\%. Finally, we equipped RA-VQA with two state-of-the-art large multi-modal/language models to achieve $\sim62$% VQA score in the OK-VQA dataset.
Supplementary Material: pdf
Submission Number: 5418
Loading